Как яндекс определяет добротность. Эквализация: настраиваем добротность фильтров (Q). Полоса частот с низкой добротностью затрагивает не только узкую область вокруг центральной частоты фильтра

Работая с эквалайзерами, мы чаще всего пользуемся всего двумя параметрами – Freq , который определяет центральную частоту фильтра и Gain , который определяет коэффициент усиления на центральной частоте фильтра. К этому списку можно добавить еще выбор типа фильтров эквалайзера, но практически во всех современных программных эквалайзерах этот выбор происходит автоматически и зависит от первоначального места размещения узла на частотном диапазоне. Если вы щелкнете мышью в области 20-30 Гц, скорее всего будет создан фильтр верхних частот; если создать узел в районе 60-70 Гц, скорее всего будет создана низкочастотная полка; если создать узел выше 100 Гц, будет создан колокол, и т.д. Конечно, для каждого эквалайзера значения частоты для определения типа фильтров будут разными, но тенденция рынка такова – современный эквалайзер должен определять типы кривых фильтров эквалайзера автоматически. Таким образом, у нас с вами остается всего два параметра (Freq, Gain), с которыми мы и осуществляем манипуляции. В этом списке чего-то не хватает, не так ли?

Наравне с параметрами центральной частоты и коэффициента усиления фильтров, существует еще один крайне важный параметр – добротность фильтров (Q ), который определяет ширину усиливаемой или ослабляемой полосы частот и определяется как отношение центральной частоты к ширине этой полосы, лежащей в пределах 3 дБ от коэффициента усиления на центральной частоте. Проще говоря, чем выше значение добротности, тем уже полоса частот, и чем ниже значение добротности, тем полоса частот шире. Все это, в первую очередь, касается колоколообразных фильтров. Для полочных и обрезных фильтров значение добротности определяет крутизну спада фильтров на центральной частоте. Таким образом, в ваших руках появляется инструмент, способный формировать частотные ландшафты – от пологих возвышенностей до отвесных скал.

Как же использовать параметр добротности (Q) на практике?

Существует несколько важных вещей, которые стоит учитывать при настройке параметра добротности:

1. Усиливая полосу частот, уменьшаем значение добротности

Основной задачей эквализации является, в первую очередь, получение оптимального баланса частот внутри отдельных инструментов, что в итоге способствует балансировке всего микса. Исходя из этого, любое усиление частот должно быть мягким и аккуратным. Человеческий слух очень цепко реагирует на слишком громкие диапазоны частот, поэтому для сохранения баланса звучания при усилении частот важно использовать именно широкие полосы, соответствующие низким значениям добротности.

2. Ослабляя полосу частот, увеличиваем значение добротности

Любой срез или ослабление частот влечет за собой достаточно существенное изменение внутреннего баланса инструмента и, соответственно, его звучания. С помощью ослабления частотных полос можно решить множество вопросов, включая подавление грязи, шума, бубнения, гула, ватности, свиста и других нежелательных призвуков, но в то же время при неправильной настройке добротности фильтров можно существенно навредить инструменту, сделав его звучание тусклым, тонким и вялым. Чтобы избежать этих неприятных вещей, достаточно увеличить значение добротности фильтров и ослаблять достаточно узкие диапазоны частот. Таким образом вы уберете лишнее, оставив при этом все полезные частоты. При использовании экстремально высоких значений добротности колоколообразного фильтра, можно создать режекторный фильтр, который отлично подходит для подавления какой-то конкретной частоты или узкой полосы частот. Это бывает полезно, когда нужно подавить очень сильные резонансы или же удалить статичный шум, например, гул от электросети на 50 или 60 Гц, в зависимости от региона, в котором была осуществлена запись.

3. Не используйте слишком высокие значения крутизны спада для обрезных фильтров

В свое время я мечтал найти такой эквалайзер, в котором был бы обрезной фильтр, способный срезать частоты под углом 90 градусов, то есть такой себе brickwall-фильтр. Но когда я нашел такой фильтр в IZotope Ozone и включил его, я понял, что он звучит очень немузыкально. Действительно, подавление частот ниже центральной частоты фильтра было впечатляющим – фильтр резал все, но это ли мне было нужно на самом деле? Я хотел получить чистый, аккуратный, точный и приятный для слуха срез, а в итоге получил красивую картинку для глаз и ужасный сдвиг фазы для ушей. Таким образом, я понял, что при настройке добротности (крутизны) обрезных фильтров нужно учитывать скорее не степень подавления частот, а скорее тандем подавление/музыкальность. Наиболее музыкально звучат обрезные фильтры с подавлением в 6 и 12 дБ на октаву. Если нужно использовать фильтры с подавлением в 24 дБ на октаву или выше, лучше применить линейнофазовые фильтры, которые не создают фазовых искажений. При использовании обрезных фильтров с высокой крутизной на отдельных дорожках особых проблем может и не возникнуть, но если вы используете такие фильтры на подгруппах или тем более на мастер-канале – будьте готовы к тому, что инструменты могут потерять локализацию, а стереокартина «поплыть».

4. Изучите документацию к вашим эквалайзерам

Во многих классических аналоговых эквалайзерах (например, API 550), и их эмуляциях соответственно, используется не постоянное значение добротности относительно усиления, а пропорциональное, то есть чем меньше коэффициент усиления, тем меньше значение добротности, и наоборот, чем выше коэффициент усиления, тем выше значение добротности. Учитывайте такие особенности в поведении отдельных приборов, чтобы процесс сведения был осмысленным, а не работой вслепую. Зависимость параметра Q от Gain также можно найти во многих программных эквалайзерах — Type 3 и Type 4 в Sonnox Oxford EQ работают «аналоговым» образом: различие этих режимов заключается в том, что при одинаковом уровне усиления, ширина полосы при низких значениях Gain для Type 3 будет уже, чем для Type 4, но при максимальном значении Gain ширина полосы для Type 3 будет такой же, как и для Type 4.

5. Полоса частот с низкой добротностью затрагивает не только узкую область вокруг центральной частоты фильтра

Вы задумывались когда-нибудь о том, почему при использовании высокочастотной полки на 10 кГц инструменты начинают звучать очень сочно, а не просто воздушно? Все дело в том, что чем сильнее вы будете усиливать высокочастотную полку с центральной частотой на 10 кГц, тем сильнее она будет захватывать нижестоящие частоты, тем самым усиливая не только высокие частоты, но и высокую средину. Усиление именно этих, более низких частот, а не верха от 10 кГц, и дает этот эффект яркости и сочности. Чем более пологие склоны полочных фильтров, тем больше будет захвачено частот в стороне от центральной частоты фильтра. Помните об этом и всегда спрашивайте себя о том, что же вы хотите усилить или ослабить в действительности? Вы хотите манипулировать всем этим огромным частотным диапазоном внутри полки или же на самом деле вас интересует какая-то конкретная частота рядом с ней?

Катушка индуктивности - деталь, которая имеет спиральную обмотку и может концентрировать переменное магнитное поле. В отличие от резисторов и конденсаторов катушки индуктивности являются нестандартными радиодеталями и их конструкция определяется назначением конкретного устройства.

Основные параметры катушки индуктивности:

  • Индуктивность
  • Добротность катушки индуктивности
  • Собственная ёмкость катушки индуктивности
  • Температурная стабильность (температурный коэффициент)

Величина индуктивности прямо пропорциональна размерам катушки и количеству витков. Индуктивность также зависит от материала сердечника, введённого в катушку и наличия экрана. Расчёт катушки индуктивности выполняется с учётом этих факторов.

При введении в катушку сердечника из магнитных материалов (феррит, альсифер, карбонильное железо, магнетит) её индуктивность увеличивается. Это свойство позволяет уменьшить количество витков в катушке для получения требуемой индуктивности и тем самым уменьшить её габариты. Это особенно важно на низкочастотных диапазонах, когда нужна большая индуктивность. Погружая сердечник в катушку на разную глубину изменяют её индуктивность. Это свойство использовалось в старых радиоприёмниках при настройке на радиостанцию. В современных приборах наиболее часто это свойство используется в индуктивных бесконтактных датчиках. Такие датчики реагируют на приближение металлических предметов.

Влиять на индуктивность катушки можно и при отсутствии в ней подвижного сердечника. В этом случае одну из двух последовательно соединённых катушек помещают внутри другой. Если затем изменять её положение, то индуктивность также будет изменяться. Такая конструкция катушек называется вариометр .

– это качество работы катушки в цепях переменного тока. Добротность катушки индуктивности определяют как отношение её индуктивного сопротивления к активному сопротивлению. Грубо говоря,индуктивное сопротивление – это сопротивление катушки переменному току, а активное сопротивление – это сопротивление катушки постоянному току и сопротивление, обусловленное потерями электрической мощности в каркасе, сердечнике, экране и изоляции катушки. Чем меньше активное сопротивление, тем выше добротность катушки и её качество. Таким образом, можно сказать, что чем выше добротность, тем меньше потери энергии в катушке индуктивности.



Индуктивное сопротивление определяется формулой:

X L = ωL = 2πfL

Где ω = 2πf – круговая частота (f – частота, Гц); L – индуктивность катушки, Гн.

Добротность катушки индуктивности определяется формулой:

Q = X L / R = ωL / R = 2πfL / R

Где R – активное сопротивление катушки индуктивности, Ом.

36 . Сущность символического метода расчета состоит в том, что при синусоидальном токе можно перейти от уравнений, составленных для мгновенных значений и являющихся дифференциальными уравнениями, к алгебраическим уравнениям, составленным относительно комплексов тока и э. д. с. Этот переход основан на том, что в уравнении, составленном по законам Кирхгофа для установившегося процесса, мгновенное значение тока заменяют комплексной амплитудой тока. Мгновенное значение напряжения на активном сопротивлении u R = iR - комплексом R , по фазе совпадающим с током. Мгновенное значение напряжения на индуктивности u L = L - комплексом j L m , опережающим ток на 90°. Мгновенное значение напряжения на емкости u C = - комплексом m , отстающим от тока на 90 о. Мгновенное значение э. д. с. е - комплексом .

Рассмотрим пример расчета тока в схеме, приведенной на рис.

Уравнение для мгновенных значений можно записать так:

u R + u L + u C = e,

iR + L + = e

Запишем его в комплексной форме:

R + j L m + m = .

Решая это уравнение относительно , получим:

=

Метод называют символическим потому, что токи и напряжения заменяют их комплексными изображениями или символами. Так R - это изображение или символ падения напряжения iR ; j L m - изображение или символ падения напряжения на индуктивности L ; m изображение падения напряжения на конденсаторе .

37.ВНИМАНИЕ! Ответ частично раскрыт в предыдущем вопросе+ (все формулы, данные тут, найдены в единичном варианте, так что за правильность не ручаюсь, но, к сожалению, больше ничего найти по этому вопросу не смог, поэтому рекомендую пользоваться формулами из предыдущего вопроса).

Если в электрической цепи действуют источники энергии, ЭДС и ток которых изменяется по гармоническому закону

ek(t) = Em*k S in(w t + y ek); Jk(t) = Jm*k Sin(w t + y jk),

(Я так понимаю, что Em – это . Аналогично и для других, но я хз)

то токи и напряжения на всех участках этой цепи будут гармоническими функциями:

ik(t) = Im*k Sin(w t + y ik); uk(t) = Um*k Sin(w t + y uk),

Законы Кирхгофа справедливы для любых цепей и воздействий, в том числе и для цепей синусоидального тока.К примеру, определяя для схемы токи и напряжения, следует составить два уравнения:

i = i1+ i2 = Im*1 Sin(w t + y i1) + Im*2 Sin(w t + y i2);

uL = ur + uc = Um*r Sin(w t + y ur) + Um*c Sin(w t +y uc).

Операции с гармоническими функциями в задачах электротехники принципиально проще выполнять, представив их комплексными числами. Такой метод называется символическим или методом комплексных чисел.

Переход от мгновенных значений к комплексным амплитудам производится следующим образом:

i = Im* Sin(w t + y i) соответствует Im = Im*ejy i,

u = Um* Sin(w t + y u) соответствует Um = Um*ejy u,

38. Простейший резистивный делитель напряжения представляет собой два последовательно включённых резистора, подключённых к источнику напряжения. Поскольку резисторы соединены последовательно, то ток через них будет одинаков в соответствии с первым правилом Кирхгофа. Падение напряжения на каждом резисторе согласно закону Ома будет пропорционально сопротивлению (ток, как было установлено ранее, одинаков):

I 1
C
I 2
R
U 1
A

Перенесем в правую часть слагаемые с коэффициентами U 2 и вынесем U 2 за скобки:

Приведем к общему знаменателю выражение в скобках:

Найдем результат в виде отношения U 2 / U 1 :

* Делитель напряжения может использоваться для усиления входного напряжения

* Делитель напряжения может использоваться для стабилизации входного напряжения - это возможно, если в качестве нижнего плеча делителя использовать стабилитрон.

39. Фильтр нижних частот- электронный или любой другой фильтр, эффективно пропускающий частотный спектр сигнала ниже некоторой частоты (частоты среза), и уменьшающий (подавляющий) частоты сигнала выше этой частоты.

* Для звуковых волн твёрдый барьер играет роль фильтра нижних частот - например, в музыке, играющей в другой комнате, легко различимы басы, а высокие частоты отфильтровываются (звук «оглушается»). Точно так же ухом воспринимается музыка, играющая в закрытой машине.

* Электронные фильтры нижних частот используются для подавления пульсаций напряжения на выходе выпрямителей переменного тока, для разделения частотных полос в акустических системах, в системах передачи данных для подавления высокочастотных помех и ограничения спектра сигнала, а также имеют большое число других применений.

* Радиопередатчики используют ФНЧ для блокировки гармонических излучений, которые могут взаимодействовать с низкочастотным полезным сигналом и создавать помехи другим радиоэлектронным средствам.

* Механические низкочастотные фильтры часто используют в контурах АВМ непрерывных систем управления в качестве корректирующих звеньев.

* В обработке изображений низкочастотные фильтры используются для очистки картинки от шума и создания спецэффектов, а также при сжатии изображений.

U 2
I 1
C
I 2
R
U 1
A

Фильтр верхних частот (ФВЧ) - электронный или любой другой фильтр, пропускающий высокие частоты входного сигнала, при этом подавляя частоты сигнала ниже частоты среза. Степень подавления зависит от конкретного типа фильтра.

Простейший электронный фильтр верхних частот состоит из последовательно соединённых конденсатора и резистора. Конденсатор пропускает лишь переменный ток, а выходное напряжение снимается с резистора. Произведение сопротивления на ёмкость (R×C) является постоянной времени для такого фильтра, которая обратно пропорциональна частоте среза в герцах:

* Подобный фильтр используется для выделения высоких частот из сигнала и часто используется в обработке аудиосигналов, например в кроссоверах. Ещё одно важное применение фильтра верхних частот - устранение лишь постоянной составляющей, для чего частоту среза выбирают достаточно низкой.

* Фильтры верхних частот используются в простых бестрансформаторных конденсаторных преобразователях напряжения для понижения напряжения переменного тока. К недостаткам таких преобразователей относится их высокая чувствительность к импульсным помехам в источнике переменного тока, а также зависимость выходного напряжения от импеданса нагрузки.

* Фильтры верхних частот используются в обработке изображений для того, чтобы осуществлять преобразования в частотной области (например, для выделения границ).

* Используется также последовательное включение фильтра верхних частот с фильтром нижних частот (ФНЧ). Если при этом частота среза ФВЧ меньше, чем частота среза ФНЧ (то есть, имеется диапазон частот, в котором оба фильтра пропускают сигнал), получится полосовой фильтр (используется для выделения из сигнала определённой полосы частот).

41. Полосовой RC - фильтр.

U вых
R 2
C 2
U вх
R 1
C 1
Пассивный полосовой RC - фильтр. Путем последовательного соединения фильтров верхних и нижних частот получают полосовой фильтр. Его выходное напряжение равно нулю на высоких и низких частотах. Одна из возможных схем представлена на рисунке 6.19.

Рисунок 6.16 - Принципиальная схема полосового RC – фильтра

Рассчитаем выходное напряжение и фазовый сдвиг на средних частотах. Формула комплексного выходного напряжения для ненагруженного фильтра имеет вид

После преобразований, получим

Обозначив , получим комплексный коэффициент передачи

Выражение для коэффициента передачи по напряжению для полосового фильтра при R1=R2=R и C1=C2=C имеет вид

График зависимости (3.9) показан на рис. 3.6. Как видно на данном рисунке, АЧХ полосового фильтра напоминает резонансную кривую колебательного контура. Поэтому соответствующую частоту называют квазирезонансной. Ее значение может быть получено из выражения (3.9) с учетом соотношения (3.10)

Рисунок 6.17 – Графики АЧХ и ФЧХ полосового фильтра

В основе любого радиоприемника лежит принцип избирательного воспроизведения сигнала, модулированного определенной несущей частотой, которая, в свою очередь, определяется резонансом колебательного контура, являющегося основным элементом схемы ресивера. От того, насколько правильно будет выбрана эта частота, зависит качество принимаемого сигнала.

Избирательность, или селективность приемника определяется тем, насколько сигналы, мешающие устойчивому приему, будут ослаблены, а полезные - усилены. Добротность контура - это величина, объективно демонстрирующая в числовом выражении успешность решения этой задачи.

Резонансная частота контура определяется по формуле Томпсона:

f=1/(2π√LC), в которой

L - величина индуктивности;

Для того чтобы понять, каким образом происходят колебания в контуре, следует разобраться в том, как он работает.

И емкостная, и индуктивная нагрузки препятствуют возникновению электрического тока, но делают это в противофазе. Таким образом, они создают условия для возникновения колебательного процесса, примерно так же, как это происходит на качелях, когда двое катающихся толкают их в разные стороны попеременно. Теоретически, меняя величину емкости конденсатора или катушки, можно добиться того, что резонансная частота контура совпадет с несущей частотой передающей радиостанции. Чем они больше будут отличаться, тем менее качественным будет сигнал. На практике приемник настраивают, меняя

Весь вопрос состоит в том, насколько острым будет пик на графике частотной характеристики приемного устройства. Именно так зрительно можно понять, как будет усилен полезный сигнал, насколько подавлены помехи. Добротность контура и является тем параметром, который определяет избирательность приема.

Определяется она по формуле:

Q=2πFW/P, где

F - резонансная частота контура;

W - энергия в колебательном контуре;

P - мощность рассеивания.

Добротность контура при параллельном включении конденсатора и индуктивности определяется по такой формуле:

С величинами индуктивности и емкости конденсатора все понятно, а что касается R, то оно напоминает, что кроме катушка имеет и активную составляющую. Поэтому схему контура часто изображают, включая в нее три элемента: емкость С, индуктивность L и R.

Добротность контура является величиной, обратно пропорциональной скорости затухания в нем колебаний. Чем она больше, тем медленнее происходит релаксация системы.

На практике самым значительным фактором, влияющим на добротность контура, является качество катушки, зависящее от ее сердечника, от числа витков, степени изолированности провода, и от ее сопротивления, а также от потерь при прохождении токов высокой частоты. Поэтому для регулировки частоты приема обычно применяют конденсаторы переменной величины, представляющие собой два набора пластин, входящих и выходящих друг из друга при вращении. Такая система характерна для практически всех нецифровых радиоприёмников.

Впрочем, и в ресиверах с цифровой настройкой также есть свои колебательные контуры, просто их резонансная частота меняется иначе.

Повышение Q контура
А. Партин, г. Екатеринбург

Основным показателей эффективности колебательного контура является добротность (Q). Физический смысл добротности - отношение запасенной в контуре энергии к рассеиваемой. Добротность зависит от потерь энергии в контуре, которые вызваны нагревом проводов, потерями в конденсаторе и катушке индуктивности, а также излучением электромагнитных волн в окружающую среду. Как бы идеально ни изготавливался колебательный контур, он обязательно имеет активное сопротивление.
Активное сопротивление катушки с ростом частоты возрастает и может увеличиваться в десятки раз. Это вызвано тем, что переменный ток высокой частоты вытесняется ближе к поверхности проводника (скин-эффект). Вот почему для увеличения добротности катушек их мотают многожильным изолированным проводом типа ЛЭШО. Добротность контурной катушки QL определяется:

где
- частота контура;
L - интдуктивность катушки;
RL - сопротивление потерь.
Добротность конденсатора Qc вычисляется по формуле


где
С - ёмкость конденсатора;
RС - сопротивление потерь.

Добротность контура Q тем выше, чем выше добротность его элементов и определяется выражением:

; .

где
ρ - характеристическое (волновое) сопротивление контура;
r=rC +rL - суммарное сопротивление контура.

Не надо забывать основную формулу, определяющую резонансную частоту fp колебательного контура:

Следовательно, добиваясь изменения одного параметра контура, например, L, чтобы не «уплывала» частота, произведение LC должно оставаться постоянным. Одну и ту же резонансную частоту можно получить при разных значениях индуктивности и ёмкости, подобно тому как одну и ту же площадь прямоугольника можно получить при разных соотношениях его сторон. Для того чтобы получить высокую добротность контура, выбор величин L и С требует определенных условий. При конструировании колебательных контуров с высокой добротностью предпочтение следует отдавать катушкам с большей индуктивностью. Большая индуктивность - это большое количество витков, а для высокой добротности провод следует брать как можно толще, что не всегда возможно.

Применение ферромагнитных сердечников позволяет уменьшить размеры катушек и повысить их добротность. Кроме того, с помощью подстроечных сердечников легко регулировать индуктивность катушек. Однако с ферромагнитными сердечниками появляется зависимость индуктивности и, соответственно, добротности катушек от величины протекающего тока. Особенно сильной эта зависимость окидывается в замкнутых магнитопроводах (тороидах). С увеличением тока происходит потеря магнитных свойств сердечника.

На рис.1 показан транзисторный резонансный усилитель на частоту 503 кГц, а в табл.1 приведены L, С и соответствующее значение коэффициента усиления.
На рис.2 показан заграждающий фильтр на эту же частоту (503 кГц), в табл.2 - номиналы LC-компонентов и коэффициента ослабления Кос фильтра.

Предлагаю пару практических советов , которые позволят довольно просто настроить колебательный контур на определенную частоту. Для этого требуется генератор стандартных сигналов (ГСС-6, Г4-18а, Г4-42 и др.) и любой низкочастотный осциллограф.
Способ 1 . Соединяем катушку и заранее отградуированный конденсатор переменной емкости в последовательную цепь (рис.За). Эта цепь включается в гнездо 1 В генератора (ГСС). Все аттенюаторы устанавливаются в максимальное положение. Перед измерением включаем генератор, выставляем необходимую частоту и замыкаем выход генератора (1 В) на корпус. Если аттенюаторы установлены на максимум, то стрелка внутреннего вольтметра установится практически на нулевое деление.
Подключаем настраиваемую цепь. Стрелка устанавливается на определенное деление шкалы, поскольку последовательный контур на частоте, отличной от резонансной, имеет достаточно большое сопротивление. Вращая ручку эталонного конденсатора, фиксируем тот момент, когда стрелка вольтметра отклонится влево (сопротивление контура на резонансной частоте уменьшается). Чем резче отклонение стрелки, тем выше добротность контура. Отсчитываем значение емкости конденсатора. Если величина емкости мала, а отклонения стрелки нет, то следует смотать некоторое количество витков провода с катушки.
Способ 2 . Собираем схему по рис.3б. С резистора R1 берется сигнал на осциллограф. Вращая ручку
конденсатора, фиксируем момент минимума сигнала на осциллографе.

Добротность колебательной системы

отношение энергии, запасённой в колебательной системе, к энергии, теряемой системой за один период колебания. Добротность характеризует качество колебательной системы (См. Колебательные системы), т.к. чем больше Д. к. с., тем меньше потери энергии в системе за одно колебание. Д. к. с. Q связана с логарифмическим Декремент ом затухания δ; при малых декрементах затухания Q ≈ π/δ. В колебательном контуре с индуктивностью L , ёмкостью C и омическим сопротивлением R Д. к. с.

где ω - собственная частота контура. В механической системе с массой m , жёсткостью k и коэффициентом трения b Д. к. с.

Добротность - количественная характеристика резонансных свойств колебательной системы, указывающая, во сколько раз амплитуда установившихся вынужденных колебаний (См. Вынужденные колебания) при Резонанс е превышает амплитуду вынужденных колебаний вдали от резонанса, т. е. в области столь низких частот, где амплитуду вынужденных колебаний можно считать не зависящей от частоты. На этом свойстве основан метод измерения Д. к. с. Величина добротности характеризует также и избирательность колебательной системы; чем больше добротность, тем у́же полоса частот внешней силы, которая может вызвать интенсивные колебания системы. Экспериментально Д. к. с. обычно находят как отношение частоты собственных колебаний к полосе пропускания системы, т. е. Q = ω/Δω. Численные значения Д. к. с.: для радиочастотного колебательного контура 30-100; для камертона 10000; для пластинки пьезокварца 100000; для объёмного резонатора СВЧ колебаний 100-100000.

Лит.: Стрелков С. П., Введение в теорию колебаний, 2 изд., М., 1964; Горелик Г. С., Колебания и волны, 2 изд., М., 1959.

В. Н. Парыгин.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Добротность колебательной системы" в других словарях:

    Большой Энциклопедический словарь

    Характеристика резонансных свойств системы, показывающая, во сколько раз амплитуда вынужденных колебаний при резонансе превышает амплитуду при его отсутствии. Чем выше добротность колебательной системы, тем меньше потери энергии в ней за период.… … Энциклопедический словарь

    Характеристика резонансных свойств системы, показывающая, во сколько раз амплитуда вынужденных колебаний при резонансе превышает амплитуду при его отсутствии. Чем выше Д. к. с., тем меньше потери энергии в ней за период. Добротность колебат.… … Естествознание. Энциклопедический словарь

    Величина, характеризующая резонансные свойства линейной колебат. системы; численно равна отношению резонансной частоты со к ширине резонансной кривой Dw на уровне убывания амплитуды в?2 раза: Q=w/Dw. Принято также выражать Д. колебат. системы… … Физическая энциклопедия

    Современная энциклопедия

    Добротность - колебательной системы, характеристика резонансных свойств системы, показывающая, во сколько раз амплитуда вынужденных колебаний при резонансе превышает их амплитуду вдали от резонанса. Чем выше добротность системы, тем меньше потери энергии в ней … Иллюстрированный энциклопедический словарь

    Добротность характеристика колебательной системы, определяющая полосу резонанса и показывающая, во сколько раз запасы энергии в системе больше, чем потери энергии за один период колебаний. Добротность обратно пропорциональна скорости… … Википедия - Собственная добротность колебательной системы. [Л.М. Невдяев. Телекоммуникационные технологии. Англо русский толковый словарь справочник. Под редакцией Ю.М. Горностаева. Москва, 2002] Тематики электросвязь, основные понятия EN unloaded Q … Справочник технического переводчика

Вверх